Spin geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds
نویسندگان
چکیده
From the existence of parallel spinor fields on CalabiYau, hyper-Kähler or complex flat manifolds, we deduce the existence of harmonic differential forms of different degrees on their minimal Lagrangian submanifolds. In particular, when the submanifolds are compact, we obtain sharp estimates on their Betti numbers. When the ambient manifold is Kähler-Einstein with positive scalar curvature, and especially if it is a complex contact manifold or the complex projective space, we prove the existence of Kählerian Killing spinor fields for some particular spinc structures. Using these fields, we construct eigenforms for the Hodge Laplacian on certain minimal Lagrangian submanifolds and give some estimates for their spectra. Applications on the Morse index of minimal Lagrangian submanifolds are obtained.
منابع مشابه
Spinc geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds
From the existence of parallel spinor fields on Calabi-Yau, hyper-Kähler or complex flat manifolds, we deduce the existence of harmonic differential forms of different degrees on their minimal Lagrangian submanifolds. In particular, when the submanifolds are compact, we obtain sharp estimates on their Betti numbers which generalize those obtained by Smoczyk in [49]. When the ambient manifold is...
متن کاملH-minimal Lagrangian fibrations in Kähler manifolds and minimal Lagrangian vanishing tori in Kähler-Einstein manifolds
H-minimal Lagrangian submanifolds in general Kähler manifolds generalize special Lagrangian submanifolds in Calabi-Yau manifolds. In this paper we will use the deformation theory of H-minimal Lagrangian submanifolds in Kähler manifolds to construct minimal Lagrangian torus in certain Kähler-Einstein manifolds with negative first Chern class.
متن کاملHarmonic Lagrangian submanifolds and fibrations in Kähler manifolds
In this paper we introduce harmonic Lagrangian submanifolds in general Kähler manifolds, which generalize special Lagrangian submanifolds in Calabi-Yau manifolds. We will use the deformation theory of harmonic Lagrangian submanifolds in Kähler manifolds to construct minimal Lagrangian torus in certain Kähler-Einstein manifolds with negative first Chern class.
متن کاملDirac operators on Lagrangian submanifolds
We study a natural Dirac operator on a Lagrangian submanifold of a Kähler manifold. We first show that its square coincides with the Hodge de Rham Laplacian provided the complex structure identifies the Spin structures of the tangent and normal bundles of the submanifold. We then give extrinsic estimates for the eigenvalues of that operator and discuss some examples. Mathematics Subject Classif...
متن کاملOn the Lifts of Minimal Lagrangian Submanifolds
Bryant and Salamon constructed metrics with holonomy G2 and Spin(7) on spin bundles of 3-dimensional space forms, and spin bundles and bundles of anti-self-dual 2-forms on self-dual Einstein 4-manifolds [BrS]. Since, apart from holonomy, the construction of integrable G2(respectively Spin(7)) structures amounts to finding differential 3(4)forms of generic type on 7(8) manifolds satisfying appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017